Priority List of Biodiversity Metrics to Observe from Space

Abstract

Monitoring global biodiversity from space through remotely sensing geospatial patterns has high potential to add to our knowledge acquired by field observation. Although a framework of essential biodiversity variables (EBVs) is emerging for monitoring biodiversity, its poor alignment with remote sensing products hinders interpolation between field observations. This study compiles a comprehensive, prioritized list of remote sensing biodiversity products that can further improve the monitoring of geospatial biodiversity patterns, enhancing the EBV framework and its applicability. The ecosystem structure and ecosystem function EBV classes, which capture the biological effects of disturbance as well as habitat structure, are shown by an expert review process to be the most relevant, feasible, accurate and mature for direct monitoring of biodiversity from satellites. Biodiversity products that require satellite remote sensing of a finer resolution that is still under development are given lower priority (for example, for the EBV class species traits). Some EBVs are not directly measurable by remote sensing from space, specifically the EBV class genetic composition. Linking remote sensing products to EBVs will accelerate product generation, improving reporting on the state of biodiversity from local to global scales.

Publication
Nature Ecology & Evolution
Hannes Feilhauer
Hannes Feilhauer
Professor for Remote Sensing in Geo- and Ecosystem Research

Professor

Pedro J. Leitão
Pedro J. Leitão
Postdoctoral scientist / Remote Sensing in Geo- and Ecosystem Research

My research interests include the interactions between society and biosphere. I have been working on the extraction of the global dynamics of ecosystems and society. I have an interest in using machine learning and multivariate statistics to understand the behavior of complex systems.