Abstract Visible and near infrared spectroscopy (vis-NIRS) may be useful for an estimation of soil properties in arable fields, but the quality of results are often variable depending on the applied chemometric approach. Partial least squares regression (PLSR) may be replaced by approaches which employ supervised learning methods or variable selection procedures in order to increase the proportion of informative wavelengths used in the estimation procedure, to reduce the noise of the spectra and to find the best fitting solution. Objectives were (1) to compare the usefulness of PLSR with either PLSR combined with a genetic algorithm (GA-PLSR) or support vector machine regression (SVMR) for an estimation of soil organic carbon (SOC), total nitrogen (N), pH, cation exchange capacity (CEC) and soil texture for surface soils (0–5 cm, n = 144) of an arable field in Bangalore (India) and (2) to test and optimize different calibration strategies for GA-PLSR for an improved estimation of soil properties. PLSR was useful for an estimation of SOC, N, sand and clay. In the cross-validation ( n = 96), accuracies of estimated soil properties generally decreased in the order GA-PLSR