Quantifying Empirical Relations between Planted Species Mixtures and Canopy Reflectance with PROTEST

Abstract

Mapping plant species composition of mixed vegetation stands with remote sensing is a complicated task. Uncertainties may arise from similar spectral signatures of different plant species as well as from variable influences of prevailing plant states (e.g., growth stages, vigor, or stress levels). Despite these uncertainties, empirical approaches may often be able to take up the challenge. However, their performance is likely to be affected by the temporal variability of empirical relations between reflectance and plant species composition. To assess some aspects of this temporal variability, we performed a greenhouse study. Three mixed stands of grassland species were planted with defined spatial variation in species proportions. The canopy reflectance of these mixed stands was measured with a field spectrometer over a period of three months. Confounding external influences on plant states apart from maturation were minimized. The suitability of canopy reflectance and derivative reflectance to draw conclusions on differences in qualitative species mixtures between the stands was tested with a classification approach (Spectral Angle Mapper, SAM). Procrustean randomization test (PROTEST), which is to our knowledge new to the field of remote sensing, was applied in combination with Isometric Feature Mapping to quantify the spectral variation caused by within-stand spatial variation in species proportions. Model fits in both analyses increased with progressing plant development; further, utilization of derivative reflectance improved the model fits. Regardless of the within-stand variation, SAM enabled a successful discrimination of the three stands with an average overall accuracy of 85% (reflectance) and 92% (derivative reflectance). In PROTEST analysis, spatial variation in reflectance was successfully related to within-stand variation in species proportions. However, observed influences of variable growth stages and health states on these relations were considerable. The temporal variation of these relations (r=0.27-0.73 for reflectance and 0.48-0.73 for derivative reflectance) was quantified for the first time under controlled conditions. (C) 2010 Elsevier Inc. All rights reserved.

Publication
Remote Sensing of Environment
Hannes Feilhauer
Hannes Feilhauer
Professor for Remote Sensing in Geo- and Ecosystem Research

Professor