Aim Globally distributed plant trait data are increasingly used to understand relationships between biodiversity and ecosystem processes. However, global trait databases are sparse because they are compiled from many, mostly small databases. This …
Deep learning and particularly Convolutional Neural Networks (CNN) in concert with remote sensing are becoming standard analytical tools in the geosciences. A series of studies has presented the seemingly outstanding performance of CNN for predictive …
The application of machine learning techniques provides a data-driven approach for a deeper understanding of the development and expressions of expertise. In extension to the common procedure of comparing experts' and novices' performances in …
Classification of physiological data provides a data driven approach to study central aspects of motor control, which changes with age. To implement such results in real-life applications for elderly it is important to identify age-specific …
Modeling and understanding the Earth system is a constant and challenging scientific endeavour. When a clear mechanistic model is unavailable, complex or uncertain, learning from data can be an alternative. While machine learning has provided …
Xylella fastidiosa (Xf) is a harmful plant pathogenic bacterium, able to infect over 500 plant species worldwide. Successful eradication and containment strategies for harmful pathogens require large-scale monitoring techniques for the detection of …
The fusion of microwave and optical data sets is expected to provide great potential for the derivation of forest cover around the globe. As Sentinel-1 and Sentinel-2 are now both operating in twin mode, they can provide an unprecedented data source …
Accurate and timely spatial classification of crop types based on remote sensing data is important for both scientific and practical purposes. Spatially explicit crop-type information can be used to estimate crop areas for a variety of monitoring and …
Accurate model representation of land- atmosphere carbon fluxes is essential for climate projections. However, the exact responses of carbon cycle processes to climatic drivers often remain uncertain. Presently, knowledge derived from experiments, …
This study compares the performance of radiative transfer model inversion techniques to estimate leaf chlorophyll content (LCC) from summer barley based on hyperspectral data. The PROSAIL model was used to simulate vegetation reflectances. Model …