Earth System Data Cubes Unravel Global Multivariate Dynamics


Understanding Earth system dynamics in the light of ongoing human intervention and dependency remains a major scientific challenge. The unprecedented availability of data streams describing different facets of the Earth now offers fundamentally new avenues to address this quest. However, several practical hurdles, especially the lack of data interoperability, limit the joint potential of these data streams. Today many initiatives within and beyond the Earth system sciences are exploring new approaches to overcome these hurdles and meet the growing inter-disciplinary need for data-intensive research; using data cubes is one promising avenue. Here, we introduce the concept of emphEarth system data cubes and how to operate on them in a formal way. The idea is that treating multiple data dimensions, such as spatial, temporal, variable, frequency and other grids alike, allows effective application of user-defined functions to co-interpret Earth observations and/or model-data. An implementation of this concept combines analysis-ready data cubes with a suitable analytic interface. In three case studies we demonstrate how the concept and its implementation facilitate the execution of complex workflows for research across multiple variables, spatial and temporal scales: (1) summary statistics for ecosystem and climate dynamics; (2) intrinsic dimensionality analysis on multiple time-scales; and (3) data-model integration. We discuss the emerging perspectives for investigating global interacting and coupled phenomena in observed or simulated data. Latest developments in machine learning, causal inference, and model data integration can be seamlessly implemented in the proposed framework, supporting rapid progress in data-intensive research across disciplinary boundaries.$<$/p$>$

Earth System Dynamics Discussions